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CHAPTER 1
Euclidean Spaces

1.1 Introduction
The vector spaces considered in this chapter are real. We assume that E is an R-vector space.

Scalar product:

Definition 1.1. A bilinear form on E is a map

B : E × E −→ R
(u, v) 7−→ B((u, v))

that satisfies the following conditions ∀u, v, w ∈ E ∀λ ∈ R:

1. B(u+ λv,w) = B(u,w) + λB(v, w)

2. B(u, v + λw) = B(u, v) + λB(v, w)

B is said to be

1. symmetric if B(u, v) = B(v, u) ∀u, v ∈ E

2. positive if B(., u) ≥ 0 ∀u ∈ E

3. defined if B(u, u) = 0 ⇔ u = 0

Notation. Scalar product is denoted: < u, v >

Example 1.2. .

1. E = Rn, X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ E

< X,Y >:=

n∑
n=1

xiyi

It is called the "canonical (or usual) scalar product".

2. E = R2 and < X,Y >= 2x1y1 + x2y2

3. E = C0([−1, 1],R) ∋ f, g (a space of continuous functions)

< f, g >:=

∫ 1

−1

f(t) · g(t) dt
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4. E = Mn(R) ∋ A,B
< A,B >:= Tr(AtB)

Proposition 1.3. A non-zero vector space has an infinite number of different scalar products.

Definition 1.4. A Euclidean space is a pair (E,< . >) where E is a R-vector space of finite dimension and
< . > is an inner product on E.

Property. Let (E,< . >) be a Euclidean space. We define:

∥X∥ :=
√

< X,X > X ∈ E

the norm (or length) of X. (It is well defined because < ., . > is always positive)

Property. Let X,Y ∈ E be, then:

∥X + Y ∥2 = ∥X∥2 + 2 ⟨X,Y ⟩+ ∥Y ∥2

Proof.

∥X + Y ∥2 =
√

⟨X + Y,X + Y ⟩
2
= ⟨X + Y,X + Y ⟩
= ⟨X,X + Y ⟩+ ⟨Y,X + Y ⟩
= ⟨X,X⟩+ ⟨X,Y ⟩+ ⟨Y,X⟩+ ⟨Y, Y ⟩
= ∥X∥2 + 2 ⟨X,Y ⟩+ ∥Y ∥

Lemma 1.5. Cauchy-Schwarz inequality We have

| < u, v > | ≤ ∥u∥ · ∥v∥ ∀u, v ∈ E

with equality if and only if u and v are collinear, i.e ∃ t ∈ R such that u = tv or v = tu

Proof. If v = 0, clear
If v ̸= 0 we consider ∀t ∈ R

∥u+ tv∥2 =< u+ tv, u+ tv >

=< u, u+ tv > +t < v, u+ tv >

=< u, u > +t < u, v > +t < v, u > +t2 < v, v >

= ∥u∥2 + 2t < u, v > +t2∥v∥2 = f(t)

−2 2 4 6
−2

2

4

6

x

y
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Case 1: f(t) has no distinct roots

∆ = 4 < u, v >2= 4∥u∥2∥v∥2 ≤ 0

⇒ < u, v >2≤ ∥u∥2 · ∥v∥2

⇒| < u, v > | ≤ ∥u∥∥v∥

Case 2: f(t) has only one root:

∆ = 0

⇒∃t ∈ R tq ∥u+ tv∥2 = 0

⇒u+ tv = 0 ⇒ u = −tv

The following definition will be studied in the analysis course:

Definition 1.6. We say that N : E → R+ is a norm if:

1. N(λu) = |λ| ·N(u) ∀λ ∈ R,∀u ∈ E

2. N(u) = 0 ⇒ u = 0

3. N(u+ v) ≤ N(u) +N(v) ∀u, v ∈ E

Lemma 1.7. The application √
< ., . > = ∥.∥ : E → R+

is called a Euclidean norm.

Proof. 1) and 2) are done

• ∥u+ v∥2 = ∥u∥2 + 2 < u, v > +∥v∥2 ≤ ∥u∥2 + 2∥u∥∥v∥+ ∥v∥2 = (∥u∥+ ∥v∥)2

⇒ ∥u+ v∥2 ≤ ∥u∥2 + ∥v∥2

Proposition 1.8. We have the following identities ∀u, v ∈ E

1. Parallelogram identity:
∥u+ v∥2 + ∥u− v∥2 = 2(∥u2∥+ ∥v∥2)

2. Polarization identity:

⟨u, v⟩ = 1

4
(∥u+ v∥2 − ∥u− v∥2)

Proof. .

1.

∥u+ v∥2 = ⟨u+ v, u+ v⟩
= ∥u∥2 + 2 ⟨u, v⟩+ ∥v∥2

CHAPTER 1. EUCLIDEAN SPACES 4



2. ∥u− v∥2 = ∥u∥2 − 2 ⟨u, v⟩+ ∥v∥2

For a:

• (1) + (2): ∥u+ v∥2 + ∥u− v∥2 = 2(∥u∥2 + ∥v∥2)

• (1)− (2): ∥u+ v∥2 − ∥u− v∥2 = 4 ⟨u, v⟩

1.2 Orthogonality
Let E be an R-vector space and ⟨, ⟩ an inner product on E.

Definition 1.9. u, v ∈ E are said to be orthogonal if < u, v >= 0. We denote u ⊥ v

• Two subsets A,B of E are orthogonal if:

∀u ∈ A,∀v ∈ B, < u, v >= 0

• If A ⊆ E we call the orthogonal of A, denoted A⊥, the set

A⊥ = {u ∈ E |< u, v >= 0 ∀v ∈ A}

Also known as orthogonal complement of A

• A family (v1, . . . , vn) of vectors in E is said to be orthogonal if ∀i ̸= j, vi ⊥ vj . It is said to be orthonormal
if it is orthogonal and additionally ∥vi∥ = 1 ∀i ∈ {1, . . . , n}

Example 1.10. E = Rn, <,> canonical scalar product

vi = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0)

< vi, vj >=

{
1 si i = j

0 si i ̸= j

(v1, . . . , vn) is a canonical basis

Proposition 1.11. 1. If A ⊆ E then A⊥ is a vector subspace of E

2. If A ⊆ B then B⊥ ⊆ A⊥

3. A⊥ = V ect(A)⊥

4. A ⊂ (A⊥)⊥

Proof. Exercise

Example 1.12. 1. E = C0([−1, 1],R)

< f, g >:=

∫ 1

−1

f(t) · g(t) dt

CHAPTER 1. EUCLIDEAN SPACES 5
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2

x

y

Then, f(t) = cos(t), g(t) = sin(t) are orthogonal: 2 cos(t) sin(t) = sin(2t)∫ 1

−1

cos(t) sin(t) dt =
1

2

∫ 1

−1

sin(2t) dt = 0

Definition 1.13. If E is a Euclidean space, the set

L(E,R) = {f : E → R | f is linear}

is called the "dual of E". It is denoted E∗. An element f ∈ E∗ is called a linear form.

Recall:

Proposition 1.14. If F, F ′ are two finite-dimensional vector spaces, then dim(L(F, F ′)) = dim(F ) · dim(F ′)
In particular, dim(F ∗) = dim(F ). Indeed, if n = (e1, . . . , ep) is a basis of F and n′ = (e′1, . . . , e

′
q) is a basis of

F ′, then the mapping

: L(F, F ′) −→ Matf×p(R)
f 7−→ (f) = Matn,n′(f).

is an isomorphism. Therefore dim(F, F ) = qp

Theorem 1.15. Rank Theorem: If F is a finite-dimensional vector space and f : F → F ′ is linear, then
dim(F ) = dim(Ker(f)) + dim(Im(f))

Proposition 1.16. If F, F ′ are two finite-dimensional vector spaces such that dim(F ) = dim(F ′) and f : F →
F ′ is linear, then f is an isomorphism ⇔ Ker(f) = 0

Proof. Recall that if G,G′ are finite-dimensional subspaces in the same vector space, then:

G = G′ ⇔ G ⊆ G′ and dim(G) = dim(G′)

⇒) f is injective ⇒ Ker(f) = 0
⇐) Let Ker(f) = 0.
Then, necessarily dim(Ker(f)) = 0 and by the rank theorem, we have dim(F ) = dim(Im(f)), so Im(f) = F ′

Lemma 1.17. Riesz’s Lemma:

CHAPTER 1. EUCLIDEAN SPACES 6



Let (E, ⟨., .⟩) be a finite-dimensional Euclidean space and f ∈ E∗. Then, ∃!u ∈ E such that f(x) =
⟨u, x⟩ ∀x ∈ E. The linear form f is given by an inner product with a vector.

Notation. For any v ∈ E, we denote by fv the mapping:

fv : E −→ R
x 7−→ fv(x) =< v, x > .

fv is linear ∀v ∈ E, i.e. E∗

Proof. Riesz Lemma
Consider the mapping

ϕ : E −→ E∗

v 7−→ ϕ(v) = fv.

ϕ is linear (exercise). ϕ is injective:

v ∈ Ker(ϕ) ⇔ fv(x) = 0 ∀x ∈ E

in particular for x = v, we have:
0 = fv(v) =< v, v >⇒ v = 0

dim(E) = dim(E∗) ⇒ ϕ is an isomorphism
⇒ ϕ bijective

∀f ∈ E∗,∃!n ∈ E such that ϕ(n) = f, i.e f(x) =< n, x > ∀x ∈ E

In this case E = Rn, the Riesz Lemma is very simple to understand:
Let f : Rn → R be a linear form. If we denote (e1, . . . , en) the canonical basis of Rn, any x ∈ Rn can be
written as

x =

n∑
n=1

αiei αi ∈ R,∀i ∈ {1, . . . , n}

⇒ f(x) =

n∑
n=1

αif(ei) =< (α1, . . . , αn), (a1, . . . , an) >=< (a1, . . . , an), (α1, . . . , αn) >

1.3 Orthonormal bases
Let (E, ⟨, ⟩) be a Euclidean space and F ⊂ E a vector subspace (dim(F ) < ∞) because dim(E) < ∞.

Note.
F⊥ := {x ∈ E | ⟨X,Z⟩ = 0∀z ∈ F}

the orthogonal of F .

Theorem 1.18. On a E = F ⊕ F⊥.
In particular, dim(F⊥) = dim(E)− dim(F ) and F = (F⊥)⊥

CHAPTER 1. EUCLIDEAN SPACES 7



Proof. We must show that:

1. F ∩ F⊥ = ∅

2. E = F + F⊥ i.e. ∀x ∈ E,∃x′ ∈ F, x′′ ∈ F⊥ such that x = x′ + x′′

1. Let x ∈ F ∩ F⊥

⇒ ⟨X,Z⟩ = 0∀Z ∈ F because x ∈ F ⇒ ⟨X,X⟩ = 0 ⇒ x = 0(⟨, ⟩ is defined)

2. Let x ∈ E. Consider fx ∈ E∗, i.e. fx : E → R, y 7→ ⟨x, y⟩ and f := fx|F : F → R ⇒ f ∈ E∗ Riesz
Lemma ⇒ ∃!x′ ∈ F such that f = fx′ : F → R, z 7→ ⟨x′, z⟩
⇒ fx(z) = fx′(z) = f(z)∀z ∈ F (Attention: not the equality for all z in E)
Let x′′ := x− x′, i.e. x = x′ + x′′ ∈ F . Let’s show x′′ ∈ F⊥.
If z ∈ F , ⟨x′′, z⟩ = ⟨x− x′, z⟩ = ⟨x, z⟩ − ⟨x′, z⟩ = 0. Therefore, x′′ ∈ F⊥ and E = F ⊕ F⊥ (dim(E) =
dim(F ) + dim(F⊥))
F ⊆ (F⊥)⊥ because ⟨x, z⟩ = 0∀x ∈ F ∀z ∈ F⊥

dim(F ) = dim(E)− dim(F⊥)

because E = G⊕G⊥, therefore dim(G) = dim(E)− dim(G⊥) for G = F⊥, dim(F⊥) = dim(G)

Definition 1.19. Let E be a vector space equipped with a scalar product ⟨, ⟩

• A family (vi)i≥0 of vectors in E is said to be orthogonal if for i ̸= j we have ⟨vi, vj⟩ = 0 i.e. vi ⊥ vj

• An orthonormal family of E is an orthogonal family (vi)i≥0 such that, furthermore, ∥vi∥ = 1 for i ≥ 0

Example 1.20. 1. E = Rn equipped with the standard dot product. The standard basis (e1, . . . , en) is
orthogonal because

⟨ei, ej⟩ =

{
1 si i = j

0 si i ̸= j

2. In E = C0([−1, 1],R) equipped with ⟨f, g⟩ =
∫ 1

−1
f(t)g(t) dt. The family (cos(t), sin(t)) is orthogonal.

The family (1, t2) is not orthogonal:

〈
1, t2

〉
=

∫ 1

−1

1t2 dt =
2

3
̸= 0

Proposition 1.21. An orthogonal family consisting of non-zero vectors is linearly independent. In particular,
an orthonormal family is linearly independent.

Proof. Suppose (v1, . . . , vn) is orthogonal with vi ̸= 0∀i = 1, . . . , n
if
∑n

j=1 αivi
∈R

= 0, then

∀i ∈ {1, . . . , n}0 =

〈
vi,

n∑
j=1

αjvj

〉
=

n∑
j=1

αj ⟨vi, vj⟩ = αi∥vi∥2
̸=0

CHAPTER 1. EUCLIDEAN SPACES 8



Therefore, αi = 0∀i = 1, . . . , n.
If (v1, . . . , vn) is orthonormal, then ∥vi∥ = 1. Therefore, vi ̸= 0, ∀i = 1, . . . , n.

Intuition. Orthogonal (perpendicular) vectors are never contained within each other (i.e. ei = λej is not possible).
If the vectors are related, then the angle is < 90 (thus the vectors are not orthogonal, absurd), (they are contained
within each other, they are not orthogonal, absurd). Therefore, they are indeed linearly independent.

Definition 1.22. (E, ⟨, ⟩) Euclidean space. A family B = (e1, . . . , en) is an orthonormal basis (or ONB) if it is
a basis and an orthonormal family.

Theorem 1.23. (E, ⟨, ⟩) Euclidean space. Then, it admits an ONB.

Proof. Let n := dim(E). Let (e1, . . . , ep) be an orthogonal family (from the point of view of the cardinal p)
such that ei ̸= 0∀i = 1, . . . , p.
Suppose, for the sake of contradiction, that p < n. Let F = V ect(e1, . . . , ep). Then, E = F ⊕ F⊥ and
dim(F ) ≤ p < n. Therefore, F⊥ ̸= {0}. Let x ∈ F⊥, x ̸= 0. Then, (e1, . . . , ep, x) is orthogonal of cardinal
> p. Therefore, p = n and (e1, . . . , en) is a basis of E. To have an orthonormal family (e′1, . . . , e

′
n) it suffices

to take e′i =
1

∥ei∥ei ∀i = {1, . . . , n}.

Proposition 1.24. Let (E, ⟨, ⟩) be a Euclidean space and let (e1, . . . , en) be an orthonormal basis of E. If
x ∈ E, we have:

x =

n∑
i=1

⟨x, ei⟩ei

In other words, the real number ⟨x, ei⟩ is the ième coordinate of x in the basis (e1, . . . , en).

Intuition. The orthonormality of the base simplifies our lives. But first, a small introduction. Let an e.v E = R2

and the base (e1, e2) = (

(
1
0

)
,

(
0
1

)
). Let a vector v⃗ = (2, 3):

−2 −1 1 2 3 4

−2

−1

1

2

3

4

e1

e2

v⃗

e1

e2

e2

e2

(2, 3)

x

y

So, we can write v⃗ = ⃗(2, 3) = 2 · e⃗1 +3 · e⃗2. The x and y (the coordinates of v) give us how many parts of each base
vector (the number can be ∈ R) and take their sums, to obtain v⃗. (The simplest: how much we have to go left and
up).
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In the orthonormal base ⟨v, ei⟩ gives us how much we take of a vector ei to make the vector v⃗ and e⃗i gives the
direction. Hence ⟨v, e1⟩ is equivalent to 2, and ⟨v, e2⟩ to 3, then:

v⃗ = ⟨v, e1⟩︸ ︷︷ ︸
=2

·e⃗1 + ⟨v, e2⟩︸ ︷︷ ︸
=3

·e⃗2

Usually, to find the coordinates in a base, we would have to solve a linear system, while an orthonormal base allows
us to obtain them by calculating the scalar product with each vector of the base, which is much simpler.

Proof. Let y :=
∑n

i=1⟨x, ei⟩ei . Then,

∀j = 1, . . . , n,

⟨x− y, ej⟩
=⟨x, ej⟩ − ⟨y, ej⟩

=⟨x, ej⟩ − ⟨
n∑

i=1

⟨x, ei⟩ei, ej⟩

=⟨x, ej⟩ −
n∑

i=1

⟨x, ei⟩︸ ︷︷ ︸
moved out

like constant

⟨ei, ej⟩

=⟨x, ej⟩

−

⟨x, e1⟩ ⟨e1, ej⟩︸ ︷︷ ︸
=0

+ . . .+ ⟨x, ej−1⟩ ⟨ej−1, ej⟩︸ ︷︷ ︸
=0

+⟨x, ej⟩ ⟨ej , ej⟩︸ ︷︷ ︸
=1

+⟨x, ej+1⟩ ⟨ej+1, ej⟩︸ ︷︷ ︸
=0

+ . . .+ ⟨x, en⟩ ⟨en, ej⟩︸ ︷︷ ︸
=0


(∀i ̸= j, ⟨ei, ej⟩ = 0 because a scalar product of orthogonal vectors)
(∀j ⟨ej , ej⟩ = 1 because a scalar product of the same vector)

=⟨x, ej⟩ − ⟨x, ej⟩⟨ej , ej⟩
=1

= 0

Therefore, x− y ∈ V ect(e1, . . . , en)
⊥ = E⊥ = {0}. Thus x = y

Corollary 1.25. ∀x ∈ E, ∥x∥2 =
∑n

i=1⟨x, ei⟩2

Proof. If x =
∑n

i=1⟨x, ei⟩ei =
∑n

i=1 xiei then

∥x∥2 = ⟨
n∑

i=1

xiei,

n∑
j=1

xjej⟩ =
n∑

i,j=1

xixj⟨ei, ej⟩ =
n∑

i=1

x2
i

1.4 Matrices and scalar products

Proposition 1.26. Let (E, ⟨, ⟩) be a Euclidean space and ε = (e1, . . . , en) an orthonormal basis. Let f ∈
L(E,E) and A = (ai,j)1≤i,j≤n be the representative matrix of f in ε, i.e., A = Matε(f)

ai,j = ⟨f(ei), ej⟩ ∀i, j = 1, . . . , n
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Proof. A is the matrix whose columns are the vectors f(ej) written in the basis ε:

A = (f(e1)| . . . |f(en)) f(ej) =

a1,j
. . .
an,j


Because ∀v ∈ E, v = c1e1 + . . . cnen then f(v) = c1f(e1) + . . . cnf(en) by linearity, so we only have to study
each f(ej)

f(ej) = a1,je1 + . . . an,jen ⇒

⟨f(ej), ei⟩ =

〈
n∑

k=1

ak,jek, ei

〉
=

n∑
k=1

ak,j⟨ek, ei⟩ = ak,j

because ⟨ek, ej⟩ =

{
0 si k ̸= j

1 si k = j
Therefore:

ai,j = ⟨f(ej), ei⟩

The matrix of a cross product is very useful in linear algebra. Before giving a definition:
Let E be a vector space of finite dimension n, a space K and a bilinear form b : E × E −→ K. If {e1, . . . , en}

is a basis of E, then: x =
∑n

i=1 xiei and y =
∑n

j=1 yjej , then we have:

b(x, y) =

n∑
i,j=1

xiyjb(ei, ej)

b is therefore determined by the knowledge of the values b(ei, ej) on a basis.

Definition 1.27. We call the matrix of b in the basis {ei} the matrix:

M(b)ei =


b(e1, e1) b(e1, e2) . . . b(e1, en)
b(e2, e1) b(e2, e2) . . . b(e2, en)

. . . . . . . . . . . .
b(en, e1) . . . . . . b(en, en)


Thus, the element of the ième row and jème column is the coefficient of xiyj .

Example 1.28. The matrix of the canonical scalar product in R3 is:

⟨X,Y ⟩ = x1y1 + x2y2 + x3y3

Mat(⟨, ⟩)ei =

1 0 0
0 1 0
0 0 1



Proposition 1.29. Scalar product represented by a matrix.
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Let us note:

A = M(b)ei︸ ︷︷ ︸
matrice de produit scalair

X = M(x)ei︸ ︷︷ ︸
coordonnées de x
dans la base ei

Y = M(y)ei︸ ︷︷ ︸
coordonnées de y
dans la base ei

(x, y ∈ E)

Then, we have:
b(x, y) = XtAY

Example 1.30. Let’s take the example with b = ⟨, ⟩ the canonical scalar product in R3. Let X =

 1
2
−1

 and

Y =

2
3
1

 be in the canonical basis of R3. Therefore:

⟨x, y⟩ = XtAY =

Xt︷ ︸︸ ︷
(1, 2,−1)×

A︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

×

Y︷ ︸︸ ︷2
3
1


= (1, 2,−1)︸ ︷︷ ︸

X

×

2
3
1


︸ ︷︷ ︸
A×Y

= 1 · 2 + 2 · 3 + (−1) · 1 = 2 + 6− 1 = 7

TODO. change of basis of the matrix of a bilinear form

1.5 Orthogonal Projections
Let (E, ⟨, ⟩) be a Euclidean space, F ⊆ E a vector subspace. Then, E = F ⊕F⊥. Therefore, ∀x ∈ E can be written
as

x = xF
∈F

+ xF⊥

∈F⊥

Definition 1.31. The orthogonal projection of E into F is the projection pF of E onto F parallel to F⊥,
i.e.

pF : E = F ⊕ F⊥ −→ F

x = xF + xF⊥ 7−→ pF (x = xF + xF⊥) = xF .

Remark 1.32. 1. pF is linear

2. ∀x ∈ E pF (x) is completely characterized by the following property:
Let y ∈ E, then

y = pF (x) ⇔
(
y ∈ F et x− y

⇒y=xF

∈ F⊥
)
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In particular, ⟨pF (x), x− pF (x)⟩ = 0. Then, if (v1, . . . , vR) is an ONB of F , we have:

∀x ∈ E, pF (x) =

k∑
i=1

⟨x, vi⟩ vi

Indeed, it suffices to verify that the vector y =
∑k

i=1 ⟨x, vi⟩ vi satisfies:

y ∈ F and x− y ∈ F⊥

x

projFx

projF⊥x

F⊥

F

Figure 1.1: Projection

W

u⃗

e1

e2

projwu

proje1u

proje2u

Figure 1.2: Projection with BON

Proposition 1.33. Let x ∈ E. Then,

∥x− pF (x)∥ = inf{∥x− y∥ | y ∈ F}

i.e. ∥x− pF (x)∥ is the distance from x to F .
See Figure 1.1

Proof. Since pF (x) ∈ F it suffices to prove that, if y ∈ F , then

∥x− pF (x)∥ ≤ ∥x− y∥
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But, ∥x− y∥2
(x−pF (x))+(pF (x)−y)

= ∥x− pF (x)∥2 + 2

︷ ︸︸ ︷〈
∈F⊥

x− pF (x),
∈F

pF (x)− y

〉
= 0 + ∥pF (x)− y∥2︸ ︷︷ ︸

≥0

≥ ∥x− pF (x)∥2

Theorem 1.34. Gram-Schmidt
Let E be a vector space equipped with a scalar product ⟨, ⟩. Let (v1, . . . , vn) be a free family of elements ∈ E.
Then, there exists an orthogonal family (w1, . . . , wn) such that

∀i = 1, . . . , n V ect(v1, . . . , vi) = V ect(w1, . . . , wi)

Moreover, this theorem gives us a method for constructing an orthonormal basis from an arbitrary basis.

Proof. of Theorem 1.34 Let’s construct the orthogonal basis: {w1, . . . , wp}. First, let’s set:{
w1 = v1

w2 = v2 + λw1, avec λ tel que w1 ⊥ w2

By imposing this condition, we find:

0 = ⟨v2 + λw1, w1⟩ = ⟨v2, w1⟩+ λ∥w1∥2

Since w1 ̸= 0, we obtain λ = − ⟨v2,w1⟩
∥w1∥2 . We notice that:{

v1 = w1

v2 = w2 − λw1

therefore V ect{v1, v2} = V ect{w1, w2}.
Once w2 is constructed, we construct w3 by setting:

w3 = v3 + µw1 + νw2

with µ and ν such that: w3 ⊥ w1 and w3 ⊥ w2

We can see w3 = v3 − λ′w1 − λ′′w2 as w3 = v3 − projF2v3 where Fi = V ect{w1, . . . , wi}

W3

v3

projw2v3

w1 = v1

w2

w3

w3

Figure 1.3: Vecteur par projection
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This gives

0 = ⟨v3 + µw1 + νw2, w1⟩ = ⟨v3, w1⟩+ µ⟨w1, w1⟩
=∥w1∥2

+ ν⟨w2, w1⟩
=0

= ⟨v3, w1⟩+ µ∥w1∥2

hence µ = − ⟨v3,w1⟩
∥w1∥2 . Similarly, by imposing that w3 ⊥ w2, we find ν = − ⟨v3,w2⟩

∥w2∥2 . As
v1 = w1

v2 = w2 − λw1

v3 = w3 − µw1 − νw2

we can see that V ect{w1, w2, w3} = V ect{v1, v2, v3}. That is, {w1, w2, w3} is an orthogonal basis of the space
spanned by v1, v2, v3. We can now clearly see the recurrence process.

Suppose we have constructed w1, . . . , wk−1 for k ≤ p. Let’s set:

wk = vk + combinaison linéaire des vecteurs déjà trouvés
= vk + λ1w1 + . . .+ λk−1wk−1

The conditions wk ⊥ wi (for i ∈ {1, . . . , k − 1}) are equivalent to:

λi = −⟨vk, wi⟩
∥wi∥2

as can be verified immediately. Since vk = wk−λ1−. . .−λk−1wk−1, we see by recurrence that V ect{w1, . . . , wk} =
V ect{v1, . . . , vk} ⇔ {w1, . . . , wk} is an orthogonal basis of V ect{v1, . . . , vk}.

What remains for us is to normalize it, i.e. ∀i ∈ {1, . . . , k} ei =
wi

∥wi∥ , hence {e1, . . . , ek} is an orthonormal
basis of F = V ect{v1, . . . , vk}.

Proposition 1.35. To understand this proposition, I advise you to read section 1.6
Every orthogonal projection is self-adjoint, i.e. if p is an orthogonal projection, then:

p∗ = p

In matrix notation: let A be a matrix of the projection p, then:

AT = A

1.6 Isometries and Adjoints

1.6.1 Isometries

Definition 1.36. An isometry of E (or orthogonal transformation) is an endomorphism f ∈ L(E) :=
L(E,E) preserving the dot product, i.e.:

⟨f(x), f(y)⟩ = ⟨x, y⟩ ∀x, y ∈ E

Definition 1.37. Let x, y ∈ E be two non-zero vectors. We have, according to the Cauchy-Schwarz inequality
(see lemma 1.5):

| ⟨x, y⟩ |
∥x∥ · ∥y∥

≤ 1
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Then, there exists one and only one θ ∈ [0, π] such that:

cos θ =
⟨x, y⟩

∥x∥ · ∥y∥
(1.1)

θ is called the angle (non-oriented) between the vectors x and y.

Proposition 1.38. If f is an isometry of E, then we have:

∥f(x)∥ = ∥x∥ ∀x ∈ E

Proof. Suppose that f is an isometry of E. Let x, y ∈ E. By definition: ⟨f(x), f(y)⟩ = ⟨x, y⟩, therefore, let
y := x, then, we have:

⟨f(x), f(x)⟩︸ ︷︷ ︸
∥f(x)∥2

= ⟨x, x⟩︸ ︷︷ ︸
∥x∥2

⇔∥f(x)∥2 = ∥x∥2

⇔∥f(x)∥ = ∥x∥

Proposition 1.39. Let f be an isometry in E, then:

1. f is bijective

2. f preserves the Euclidean distance and angles

Proof. Let f be an isometry in E and two vectors u, v ∈ E

1.

∥f(u)− f(v)∥ =
√

⟨f(u), f(v)⟩ =
√
⟨u, v⟩ = ∥u− v∥

2. Let θ1 be the angle between f(u) and f(v) and θ2 be the angle between u and v, so:

cos θ1 :=
⟨f(u), f(v)⟩

∥f(u)∥ · ∥f(v)∥

cos θ2 :=
⟨u, v⟩

∥u∥ · ∥v∥
By definition, ⟨f(u), f(v)⟩ = ⟨u, v⟩, according to proposition 1.38, ∀x, ∥f(x)∥ = ∥x∥, so:

cos θ1 :=
⟨f(u), f(v)⟩

∥f(u)∥ · ∥f(v)∥
=

⟨u, v⟩
∥u∥ · ∥v∥

= cos θ2

Definition 1.40. Let F be a vector subspace of E, therefore E = F ⊕ F⊥ where ∀v ∈ E,∃v1 ∈ F, v2 ∈ F⊥
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such that v = v1 + v2. We set:
sF (v) = v1 − v2

and we call sF an orthogonal symmetry with axis F.

F

v

v1

v2

−v2sF (v)

Figure 1.4: Orthogonal symmetry with axis F

Proposition 1.41. Orthogonal symmetry is an isometry.

Proof. TODO or not needed

Proposition 1.42. f is an isometry if and only if it transforms every orthonormal basis into an orthonormal
basis.

Proof. Let f be an isometry, then it transforms any basis into a basis because f is bijective by prop. 1.39.

• (⇒) Suppose that f is an isometry. Let {ei} be an orthonormal basis, then we have:

⟨f(ei), f(ej)⟩ = ⟨ei, ej⟩ = δi,j

Therefore, {f(ei)} is an orthonormal basis.

• (⇐) Suppose that there exists an orthonormal basis {ei} such that {f(ei)} is also an orthonormal basis.
Moreover, let x = x1e1 + . . . xnen and y = y1e1 + . . .+ ynen with xi, yi ∈ R
Since {ei} is orthonormal, then we have:

⟨x, y⟩ = x1y1 + . . .+ xnyn =

n∑
i=1

xiyi (1.2)

On the other hand:

⟨f(x), f(y)⟩ =

〈
n∑

i=1

xif(ei),

n∑
i=1

yif(ei)

〉
=

n∑
i,j=1

xiyj ⟨f(ei), f(ej)⟩

=

n∑
i,j=1

xiyj ⟨ei, ej⟩ =
car {ei} orthonormée

=

n∑
i=1

xiyi =
D’apres 1.2

⟨x, y⟩
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Therefore f is an isometry.

Proposition 1.43. If {ei} is an orthonormal basis, f an isometry and A = M(f)ei , then ATA = I = AAT .

Proof. To prove this, we will use proposition 1.29.
By definition of isometry, we have:

⟨f(x), f(y)⟩ = ⟨x, y⟩ ∀x, y ∈ E

⇔ (AX)T (AY )︸ ︷︷ ︸
⟨f(x),f(y)⟩

= XTATAY = XTY︸ ︷︷ ︸
⟨x,y⟩

⇔ATA = I

Proposition 1.44. If A is a matrix of isometry in an orthonormal basis, then det(A) = ±1

Proof. By proposition 1.43, we have: ATA = I, hence:

det(ATA) = det(I) = 1 ⇒det(A)2 = 1 (because det(AT ) = det(A))
⇒det(A) = ±1

Intuition. An isometry performs a rotation or a reflection; it preserves distances, and therefore the area (or
volume) of a figure constructed by the base of this transformation is equal to 1.

1.6.2 Adjoint endomorphism

Proposition 1.45. Let E be a Euclidean space and f ∈ End(E). There exists one and only one endomorphism
f∗ ∈ E such that

⟨f(x), y⟩ = ⟨x, f∗(y)⟩ , ∀x, y ∈ E

f∗ is called the adjoint of f .
If {ei} is an orthonormal basis and A = M(f)ei , then the matrix A∗ = M(f∗)ei is the transpose of A, i.e.

A∗ = AT

Proof. Again, for the proof, we will use proposition 1.29 which is very useful, so I advise you to master this
concept.

Let {ei} be an orthonormal basis of E and let us denote

A = M(f)ei A∗ = M(f∗)ei X = M(x)ei Y = M(y)ei
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Since we are in an orthonormal basis, the statement is written:

(AX)TY︸ ︷︷ ︸
⟨f(x),y⟩

= XTATY = XT (A∗Y )︸ ︷︷ ︸
⟨x,f∗(y)⟩

∀X,Y ∈ Mn,1(R)

which implies that A∗ = A and, furthermore, demonstrates the uniqueness of such adjoint.

1.7 Orthogonal Groups
Reminder:

Definition 1.46. A general linear group:

GL(n,R) = {A ∈ Mn(R) | det(A) ̸= 0}

is a group of all linear transformations (square matrices) that are invertible (because det(A) ̸= 0).

Definition 1.47. Orthogonal Group: The set:

O(n,R) := {A ∈ Mn(R) | ATA = I} = {A ∈ Mn(R) | AAT = I}

satisfies the following properties:

1. if A,B ∈ O(n,R), then AB ∈ O(n,R)

2. I ∈ O(n,R)

3. if A ∈ O(n,R) then A−1 ∈ O(n,R)

In particular, O(n,R) is a subgroup of GL(n,R) (group of invertible matrices) (see definition 1.46).

Intuition. The meaning of orthogonal matrices is clear: they represent the matrices of orthogonal transformations
(isometries) in an orthonormal basis (see defn 1.9).

We can notice that if det(A) = 1, this isometry represents a rotation; furthermore, we have the following
definition:

Definition 1.48. The set of direct orthogonal matrices (i.e. such that det(A) = 1)

SO(n,R) = {A ∈ O(n,R) | det(A) = 1}

is a group, called the special orthogonal group.

Example 1.49. The matrix

A =
1

3

 2 −1 2
2 2 −1
−1 2 2


is orthogonal. We can verify that ATA = I, or, it is sufficient to show that c1, c2, c3 is an orthonormal family,
i.e.:

∥ci∥2 = 1 and ⟨ci, cj⟩ = 0 if i ̸= j

We can interpret A as the matrix of a transformation f in the canonical basis {ei}, so we have: ci = f(ei),
according to proposition 1.42 f is orthogonal. Moreover, we see that det(A) = +1. Consequently, f is a direct
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orthogonal transformation.

Proposition 1.50. The change-of-basis matrix from an orthonormal basis to an orthonormal basis is an or-
thogonal matrix.

Proof. I’m providing intuition. A transition matrix transforms one basis into another; it transforms the
vectors of the basis, so it transforms the basis of the O.N.B. into vectors of the basis of the O.N.B. Therefore,
according to proposition 1.42, this matrix is orthogonal.
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CHAPTER 2
Determinants

This chapter is more of a cheat sheet for determinants because I’m not going to give proofs but the useful properties,
examples, and intuition.

Definition 2.1. Let A = [ai,j ] ∈ Mn(R) be a square matrix n× n, then:

det(A) =
∑
σ∈Sn

signe(σ) ·
n∏

i=1

ai,σ(i)

where

• Sn is a group of all permutations of {1, . . . , n}

• signe(σ) is a sign of permutation

This definition is very formal, so at the end of this chapter we will reformulate it. First, we will study the
properties of determinants:

2.1 Most Important Properties

Proposition 2.2. the properties of the determinant. For this proposition, we denote det(c1, . . . , cn) a determi-
nant where ∀i, ri and ∀i, yi represent a column (or a column vector). And ∀i, λi ∈ R.

1. Determinant of the identity matrix is 1:

det(In) = 1

2. Determinant of the rank 1 matrix is its only element:

det(
[
a1,1

]
) = a1,1 où a1,1 ∈ R

3. Linearity 1:

det(r1, . . . , ri + yi, . . . , rn) = det(r1, . . . , ri, . . . , rn) + det(r1, . . . , yi, . . . , rn)

4. Linearity 2:
det(r1, . . . , λiri, . . . , rn) = λi det(r1, . . . , ri, . . . , rn)

21



Note. That’s why:
det(λA) = λn det(A)

5. Same columns: Suppose that i ̸= j and ci = cj then:

det(c1, . . . , ci, . . . , cj , . . . , cn) = 0

If there are two identical columns, then det is equal to 0.

6. Column swaps:

det(c1, . . . , ci, . . . , cj , . . . , cn) = − det(c1, . . . , cj , . . . , ci︸ ︷︷ ︸
permutation

, . . . , cn)

In other words, a column permutation changes the sign.

7. Determinant of multiplied matrices: Let A,B ∈ Mn(R)

det(AB) = det(A) det(B)

8. Determinant of a transposed matrix: Let A ∈ Mn(R)

det(AT ) = det(A)

2.2 Expansion along a row/column

Definition 2.3. Let A = (ai,j) ∈ Mn(R) be a square matrix, i.e.:

A =



a1,1 a1,2 . . . a1,i−1 a1,i a1,i+1 . . . a1,n
a2,1 a2,2 . . . a2,i−1 a2,i a2,i+1 . . . a2,n

...
...

...
...

...
...

...
...

aj−1,1 aj−1,2 . . . aj−1,i−1 aj−1,i aj−1,i+1 . . . aj−1,n

aj,1 aj,2 . . . aj,i−1 aj,i aj,i+1 . . . aj,n
aj+1,1 aj+1,2 . . . aj+1,i−1 aj+1,i aj+1,i+1 . . . aj+1,n

...
...

...
...

...
...

...
...

an,1 an,2 . . . an,i−1 an,i an,i+1 . . . an,n


Then, Aj,i is a matrix where row j and column i are deleted, i.e.:

Aj,i =



a1,1 a1,2 . . . a1,i−1 a1,i+1 . . . a1,n
a2,1 a2,2 . . . a2,i−1 a2,i+1 . . . a2,n

...
...

...
...

...
...

...
aj−1,1 aj−1,2 . . . aj−1,i−1 aj−1,i+1 . . . aj−1,n

aj+1,1 aj+1,2 . . . aj+1,i−1 aj+1,i+1 . . . aj+1,n

...
...

...
...

...
...

...
an,1 an,2 . . . an,i−1 an,i+1 . . . an,n


∈ Mn−1(R)

This allows us to expand the determinant with respect to a row or column:
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Proposition 2.4. Let A = (ai,j) ∈ Mn(R) be a square matrix and let 1 ≤ k ≤ n

det(A) =

n∑
i=1

(−1)i+kak,i det(Ak,i)

be the calculation of the determinant with respect to the kième row.

Example 2.5. Let

A =

1 4 5
2 9 8
3 7 6

 ∈ M3(R)

1 4 5
4 5

2 9 8

3 7 6
7 6

⇒A2,1 =

1 4 5
1 5

2 9 8

3 7 6
3 6

⇒A2,2 =

1 4 5
1 4

2 9 8

3 7 6
3 7

⇒A2,3 =

Ce qui est au centre
des lignes est le ai,j .
Ici: a2,1

Figure 2.1: Development with respect to the second row

So:

det(A) =

n∑
i=1

(−1)i+2a2,i det(A2,i)

= (−1)1+2 · a2,1 · det(A2,1) + (−1)2+2 · a2,2 · det(A2,2) + (−1)3+2 · a2,3 · det(A2,3)

= (−1)1+2 · 2 ·
∣∣∣∣4 5
7 6

∣∣∣∣+ (−1)2+2 · 9 ·
∣∣∣∣1 5
3 6

∣∣∣∣+ (−1)3+2 · 8 ·
∣∣∣∣1 4
3 7

∣∣∣∣
= (−1) · 2 · (−11) + 1 · 9 · (−9) + (−1) · 8 · (−5)

= 22− 81 + 40

= −19
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Proposition 2.6. Let A = (ai,j) ∈ Mn(R) be a square matrix and let 1 ≤ k ≤ n

det(A) =

n∑
i=1

(−1)i+kai,k det(Ai,k)

be the calculation of the determinant with respect to the kième column.

Example 2.7. Let

A =

1 4 5
2 9 8
3 7 6

 ∈ M3(R)

1 4 5
2 8

2 9 8

3 7 6
3 6

⇒A1,2 =

1 4 5
1 5

2 9 8

3 7 6
3 6

⇒A2,2 =

1 4 5
1 5

2 9 8

3 7 6
2 8

⇒A3,2 =

Figure 2.2: Development with respect to the second column

So:

det(A) =

n∑
i=1

(−1)i+2ai,2 det(Ai,2)

= (−1)1+2 · a1,2 · det(A1,2) + (−1)2+2 · a2,2 · det(A2,2) + (−1)3+2 · a3,2 · det(A3,2)

= (−1)1+2 · 4 ·
∣∣∣∣2 8
3 6

∣∣∣∣+ (−1)2+2 · 9 ·
∣∣∣∣1 5
3 6

∣∣∣∣+ (−1)3+2 · 7 ·
∣∣∣∣1 5
2 8

∣∣∣∣
= (−1) · 4 · (−12) + 1 · 9 · (−9) + (−1) · 7 · (−2)

= 48− 81 + 14

= −19

2.3 Determinant of a triangular matrix
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Corollary 2.8. The determinant of a triangular matrix is the product of its diagonal elements. I.e., let a
triangular matrix be

A =


a1,1 a1,2 . . . a1,n−1 a1,n
0 a2,2 . . . a2,n−1 a2,n
...

...
. . .

...
...

0 0 . . . 0 an,n


then

det(A) = a1,1 · a2,2 · . . . · an,n

Example 2.9. Let

A =

1 4 5
0 9 8
0 0 6

 ∈ M3(R)

Let’s expand this determinant with respect to the first column:

det(A) =

n∑
i=1

(−1)i+2ai,2 det(Ai,2)

= (−1)1+1 · a1,1 · det(A1,1) + (−1)2+1 · a2,1 · det(A2,1) + (−1)3+1 · a3,1 · det(A3,1)

= (−1)2 · 1 ·
∣∣∣∣9 8
0 6

∣∣∣∣+ (−1)3 · 0 ·
∣∣∣∣4 5
0 6

∣∣∣∣︸ ︷︷ ︸
=0

+(−1)4 · 0 ·
∣∣∣∣4 5
9 8

∣∣∣∣︸ ︷︷ ︸
=0

= 1︸︷︷︸
=a1,1

·
∣∣∣∣9 8
0 6

∣∣∣∣
= det(

[
9 8
0 6

]
=: B)

= (−1)1+1 · b1,1 · det(B1,1) + (−1)2+1 · b2,1 · det(B2,1)
développement par rapport

à la premiere colonne

= 1 · 9︸︷︷︸
a2,2

·
∣∣6∣∣+ (−1) · 0 ·

∣∣8∣∣︸ ︷︷ ︸
=0

= 1︸︷︷︸
=a1,1

· 9︸︷︷︸
=a2,2

· 6︸︷︷︸
=a3,3

2.4 Cofactor matrix and adjoint matrix
First, let’s recall the definition of Ai,j . It is a square matrix where the iième row and the jième column are removed.
(See definition 2.3).

Definition 2.10. Let A = (ai,j) ∈ Mn(R) be a square matrix. We denote

bi,j = (−1)i+j det(Ai,j)

Next, we denote the matrix

N =

b1,1 . . . b1,n
...

. . .
...

bn,1 . . . bn,n

 = Com(A)

The matrix N is called the cofactor matrix of A. Then, the adjoint matrix of A is defined as the transposed
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cofactor matrix:

A∗ = NT =

b1,1 . . . bn,1
...

. . .
...

b1,n . . . bn,n



Theorem 2.11. Let A ∈ MnR be a square matrix and A∗ its adjoint matrix, then we have:

A∗A = AA∗ = det(A)In =


det(A) 0 0 . . . 0 0

0 det(A) 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 det(A)


What is the use of such a matrix?

2.5 Inverse Matrix

Theorem 2.12. Let A ∈ Mn(R) be a square matrix such that det(A) ̸= 0, then:

A−1 =
1

det(A)
·A∗

is the inverse matrix of A.

Corollary 2.13. If A ∈ Mn(R) is an invertible square matrix, then:

det(A−1) =
1

det(A)
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CHAPTER 3
Reduction of Endomorphisms

While writing this chapter, I was inspired by the videos from the channel 3blue1brownwhich I advise you to watch,
at least the playlist concerning linear algebra. The second source of inspiration was Joseph Grifone’s book[2].

3.1 Introduction
In the previous chapter, we studied the concept of an orthonormal basis, the uses of which are: simplification of
coordinate calculations in a basis and calculation of a projection. This concept is one of the first steps towards the
study of SVD1.which is applied in several fields, e.g.: the reduction of image sizes.

In this chapter, we continue the study of bases to be able to finally understand the SVD. We will study the
reduction of endomorphisms, to be more precisediagonalization and triagonalization. To begin: a small exercise:

Exercise. Calculate [
3 1
0 2

]15
=

[
3 1
0 2

]
· . . . ·

[
3 1
0 2

]
︸ ︷︷ ︸

15 fois

This doesn’t seem very easy, does it? At the end of this chapter, we will find a way to simplify the calculation
and in the end we will solve this exercise.

We know from linear algebra that we can represent a matrix of a mapping in different bases, i.e. let {ei} be a
basis of E and f a mapping. Then this mapping in the basis {ei} is represented:

A = M(f)ei = ∥f(e1), . . . , f(en)∥

Let {e′i} be another basis of E, then we can represent the mapping f in this basis as well, let’s denote: P = Pei→e′i
a change-of-basis matrix from the basis {ei} to the basis {e′i}

A′ = M(f)e′i = P−1AP = ∥f(e′1), . . . , f(e′n)∥e′i

Definition 3.1. The matrix A is diagonalizable if there exists a similar matrix a A′ that is diagonal:

A′ =


a1,1 0 . . . 0

0 a2,2
. . .

...
...

. . . . . . 0
0 . . . 0 an,n


aA is similar to A′ if there exists a change-of-basis matrix P such that A′ = P−1AP

1Singular Value Decomposition
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Definition 3.2. The matrix A is triangulable if there exists a similar triangular (upper/lower) matrix A′

A′ =


a1,1 a1,2 . . . a1,n

0 a2,2
. . .

...
...

. . . . . . an−1,n

0 . . . 0 an,n

 or A′ =


a1,1 0 . . . 0

a2,1 a2,2
. . .

...
...

. . . . . . 0
an,1 . . . an,n−1 an,n


So the problems in this chapter that we are going to solve are:

1. Determine whether an endomorphism f is diagonalizable/triangulable, i.e., if there exists such a matrix A′.

2. Determine the change-of-basis matrix P and the matrix A′.

Throughout the chapter, we assume that the vector space E is of finite dimension.

3.2 Eigenvectors - Eigenvectors
Let’s start by clarifying the concept of a linear application and its matrix. Let’s take for that the matrix from the
exercise at the beginning of the chapter:

A =

[
3 1
0 2

]
This matrix transforms the vector space that we give it, or, to simplify, it transforms each vector of the vector

space. Let’s take a vector v3 =

(
1
1

)
, by applying A we obtain:

Av3 =

[
3 1
0 2

] [
1
1

]
=

[
3
0

]
+

(
1
2

)
=

[
4
2

]

−1 1 2 3 4 5

−1

1

2

3

v3

Av3

x

y

We note that the vector Av3 is no longer located on the same line as the vector v3, which makes sense because if
the vectors were on the same lines after a transformation, it would not make sense. On the other hand, sometimes

there are cases when the vector applied to the matrix remains on the same line, for example the vector v2 =

(
−1
1

)
,

with Av2 =

(
−2
2

)
= 2v2
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−4 −2 2 4

2

4

v2 v3

Av2
Av3

AAv2

x

y

And this is not only the case for the vector
(
−1
1

)
, by taking any vector generated by v =

(
−1
1

)
, we will obtain

Av = 2v. Such vectors v and the scalars (here: 2) are called eigenvectors and eigenvalues respectively. So, we have
the formal definition:

Definition 3.3. Let f be an endomorphism in E and a vector v ∈ E is called an eigenvector of f if:

1. v ̸= 0

2. There exists a real number λ such that f(v) = λv

The scalar λ ∈ R is called the eigenvalue corresponding to v.

Intuition. Eigenvectors are vectors that, under the action of f , do not change direction, only length (not even
always). This simplifies the calculation of such vectors. Can you calculate A3v3? Not very easy, then the vector
A3v2?

Av2 = 2v2 ⇒ A2v2 = 2 · 2v2 = 4v2 ⇒ A3v2 = 2 · 4v2 = 8v2 =

(
−8
8

)
That’s cool, isn’t it?

On the other hand, this is not the only use of eigenvectors, and we will come back to discuss it here, but first,
how do we find such vectors?

3.3 Finding Eigenvalues
We are looking for vectors which, under the action of the endomorphism f , are scaled by a factor of λ ∈ R, so we
are supposed to solve this equation:

f(v) = λv

⇔ Av = λv in matrix notation
⇔ Av = λ(Iv) where I is an identity matrix
⇔ Av − λIv = 0

⇔ (A− λI)v = 0

So, we need to study the application (A− λI) and connect it to the notion of determinants. Remember: if the
determinant of a matrix is non-zero, this matrix (i.e. endomorphism) is injective. In our case, if det(A− λI) were
zero, the only vector v that would give (A− λI)v = 0 was the zero vector v = 0 because (A− λI) is linear and (as
we supposed) injective.

On the other hand, according to the definition, the eigenvectors are not zero, so the injective case is not
suitable, so to have eigenvectors the application (A− λI) must not be injective, which is equivalent to saying that
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det(A− λI) = 0. So, we are supposed to calculate the following determinant:

det(A− λI) = det



a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
. . . . . . . . . . . .
an,1 an,2 . . . an,n

−


λ 0 . . . 0
0 λ . . . 0
. . . . . . . . . . . .
0 0 . . . λ


 =

∣∣∣∣∣∣∣∣
a1,1 − λ a1,2 . . . a1,n
a2,1 a2,2 − λ . . . a2,n
. . . . . . . . . . . .
an,1 an,2 . . . an,n − λ

∣∣∣∣∣∣∣∣
By developing this determinant, we obtain an equation of the type:

(−1)nλn + an−1λ
n−1 + . . .+ a1λ+ a0 = 0

whose roots are the eigenvalues of f (remember: eigenvalue is a factor λ). Don’t focus too much on this equation
for now, we’ll come back to it.

Proposition 3.4. Let f be an endomorphism in a vector space E of finite dimension n and A the representative
matrix of f in a basis of E. The eigenvalues of f are the roots of the polynomial:

Pf (λ) = det(A− λI)

This polynomial is called the characteristic polynomial of f .

Definition 3.5. The set of eigenvalues of f is called the spectrum of f and is denoted SpK(f) or SpK(A) if
A is a matrix of f .

To clarify:

Example 3.6. Let f be an endomorphism in R2 whose representative matrix in the canonical basis is:[
3 1
0 2

]
Let’s calculate its eigenvalues: [

3 1
0 2

]
v = λv

⇔
[
3 1
0 2

]
v − λIv = 0

⇔
([

3 1
0 2

]
− λI

)
v = 0

⇒ det

([
3 1
0 2

]
− λI

)
= 0

⇒ det

([
3 1
0 2

]
− λ

[
λ 0
0 λ

])
= 0

⇒ det

([
3− λ 1
0 2− λ

])
= 0

= (3− λ)(2− λ) = 0

We can clearly see that the solutions are: λ1 = 3 and λ2 = 2

We can find eigenvalues, nevertheless, we were looking for the vectorsof their own. And there we are:

CHAPTER 3. REDUCTION OF ENDOMORPHISMS 30



3.4 Finding Eigenvectors
Suppose that for q ∈ N∗ we have already found q eigenvalues of a matrix {λ1, . . . , λq}, to find the eigenvectors, we
still need to find the basis of:

ker(A− λiI) ∀i ∈ {1, . . . , q}
which is equivalent to:

(A− λiI) v = 0 ∀i ∈ {1, . . . , q}

Example 3.7. Again, the matrix

A =

[
3 1
0 2

]
in the canonical basis of R2. We have already found its eigenvalues: λ1 = 3 and λ2 = 2. So, let’s find the
vectors: [

3− λ1 1
0 2− λ1

] [
x
y

]
=

[
3− 3 1
0 2− 3

] [
x
y

]
=

[
0 1
0 −1

] [
x
y

]
= 0 ⇒


y = 0

−y = 0

x ∈ R

Therefore, ker(A− 3I) =

(
x
0

)
= Vect(

(
1
0

)
). Here is our first eigenvector:

(
1
0

)
. For the second one:

[
3− λ2 1

0 2− λ2

] [
x
y

]
=

[
3− 2 1
0 2− 2

] [
x
y

]
=

[
1 1
0 0

] [
x
y

]
= 0 ⇒

{
x+ y = 0 ⇒

{
x = −y

Therefore, ker(A− 2I) =

(
−y
y

)
= y

(
−1
1

)
= Vect(

(
−1
1

)
) and here is the second eigenvector:

(
−1
1

)
(it was

our vector v2 at the beginning of the chapter).

Finally, the useful property:

Proposition 3.8. Let A ∈ Mn(R) be a matrix with its eigenvectors: {λ1, . . . , λn}, then:

Tr(A) = λ1 + . . .+ λn

det(A) = λ1 · . . . · λn

3.5 Diagonalizable endomorphisms
Let’s revisit the utility of eigenvectors. Let f be an endomorphism of E whose base is {e1, . . . , en} and Matei(f) = A
and the matrix of f in this base. Let’s take the following example again:

Example 3.9. We have: A =

[
3 1
0 2

]
in the canonical basis e1 =

[
1
0

]
and e2 =

[
0
1

]
. We recall that we found

two eigenvectors: 
v1 =

(
1

0

)

v2 =

(
−1

1

)
We notice that these two vectors are linearly independent and thus form a basis for R2. Let’s try to change
the basis of A using two methods:

CHAPTER 3. REDUCTION OF ENDOMORPHISMS 31



1. We can calculate the coordinates of f(v1) and f(v2) in the basis {v1, v2}, we have:

f(v1) = 3v1 = 3 · v1 + 0 · v2
f(v2) = 2v2 = 0 · v1 + 2 · v2

And thus Matvi(f) = ∥f(v1), f(v2)∥vi =
[
3 0
0 2

]
2. We can calculate the change-of-basis matrix P = Pei→vi from the basis {ei} to the basis {vi} and deduce

the matrix of f in the new basis. We have:
v1 =

(
1

0

)
= 1 · e1 + 0 · e2 =

(
1

0

)
ei

v2 =

(
−1

1

)
= −1 · e1 + 1 · e2 =

(
−1

1

)
ei

thus P =

[
1 −1
0 1

]
and P−1 =

[
1 1
0 1

]
(you can verify the calculation). And so:

A′ = P−1AP =

[
1 1
0 1

] [
3 1
0 2

] [
1 −1
0 1

]
=

[
1 1
0 1

] [
3 −2
0 2

]
︸ ︷︷ ︸

AP

=

[
3 0
0 2

]

And there you have it, the magic: we found the diagonal matrix.

Next, let’s generalize what we have done.

Definition 3.10. Let λ ∈ K, we denote:

Eλ := {v ∈ E | f(v) = λv}

Eλ is a vector space of E called eigen-space corresponding to λ.

Remark 3.11. 1. If λ is not an eigenvalue of f , then Eλ = {0}

2. If λ is an eigenvalue, then:

Eλ = { eigenvectors associated with λ} ∪ {0} and dimEλ ≥ 1

Proposition 3.12. Let λ1, . . . , λp be pairwise distinct scalars. Then the eigenspaces Eλ1 , . . . , Eλp form a direct
sum. In other words, if B1, . . . ,Bp are bases for Eλ1

, . . . , Eλp
, the family {B1, . . . ,Bp} is linearly independent

(but not necessarily a spanning set for E).

Proof. Let Eλ1
, . . . , Eλp

be the eigenspaces associated with the eigenvalues λ1, . . . , λp of an endomorphism f
of a vector space E. We must show that these subspaces are in direct sum, meaning that if a vector belongs
to their intersection, then it is zero.

Let’s take an element v belonging to their sum, meaning it can be written in the form:

v = v1 + v2 + · · ·+ vp

with vi ∈ Eλi
for all i.
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Since each vi is an eigenvector for f associated with λi, we have:

f(vi) = λivi.

Let’s apply f to the sum:

f(v) = f(v1 + v2 + · · ·+ vp) = f(v1) + f(v2) + · · ·+ f(vp).

Using the linearity of f , this gives:

f(v) = λ1v1 + λ2v2 + · · ·+ λpvp.

However, v is also a combination of these same vectors:

v = v1 + v2 + · · ·+ vp.

Therefore, by rearranging:

(λ1v1 + λ2v2 + · · ·+ λpvp)− (v1 + v2 + · · ·+ vp) = 0.

Which gives:
(λ1 − 1)v1 + (λ2 − 1)v2 + · · ·+ (λp − 1)vp = 0.

Let’s factor each term:
(λ1 − λ)v1 + (λ2 − λ)v2 + · · ·+ (λp − λ)vp = 0.

However, the λi are assumed to be distinct. We deduce that the coefficients are different, and that the sum is
zero only if all vi are zero (since eigenspaces are generally in direct sum).

Thus, v = 0, which proves that the eigenspaces are in direct sum.

Thus, the eigenspaces are always in direct sum, but not necessarily equal to E:

Eλ1
⊕ . . .⊕ Eλp

⊂
̸=
E

which holds if:
dimEλ1

+ . . .+ dimEλp
< dimE

Theorem 3.13. Let f be an endomorphism in E and λ1, . . . , λp its eigenvalues, then the following properties
are equivalent:

1. f is diagonalizable

2. E is a direct sum of its eigenspaces: E = Eλ1
⊕ . . .⊕ Eλp

3. dimEλ1 + . . .+ dimEλp = dimE

Corollary 3.14. If f is an endomorphism of E with dimE = n and f admits n pairwise distinct eigenvalues,
then f is diagonalizable.

But since the eigenvalues are the roots of the characteristic polynomial (see prop 3.4) we have:

Proposition 3.15. Let f be an endomorphism in E and λ an eigenvalue of order α (i.e., α is a root of Pf (λ)
of order α, i.e., Pf (λ) = (X − λ)αQ(X)). Then:

dimEλ ≤ α
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Theorem 3.16. Let f be an endomorphism in E with dimE = n. Then f is diagonalizable if and only if:

1. Pf (X) is split, i.e:
Pf (X) = (−1)n(X − λ1)

α1 · . . . · (X − λp)
αp

(λi are the roots, hence the eigenvalues) and α1 + . . .+ αp = n. Thus, if the sum of the multiplicities of
the roots is equal to the dimension of the vector space.

2. The dimensions of the eigenspaces are maximal, i.e ∀i ∈ {1, . . . , p}

dimEλi
= αi

Intuition. It’s not always easy to understand the idea through characteristic polynomials, so another way to look
at it is:

1. We find the eigenvalues: λ1, . . . , λp

2. Then we find the eigenspaces: Eλi
= ker(f − λiI)

3. We sum the dimensions: dimEλ1 + . . .+ dimEλp =: d.

• If d = dimE i.e., if the sum of the dimensions is equal to the dimension of the space E, the eigenspaces
span E and thus f is diagonalizable (because its matrix can be written in the basis of these eigenvectors).

• Otherwise, the number of linearly independent eigenvectors is not sufficient to span E.

3.6 Applications

3.6.1 Calculation of Power
So, we’re back where we started; I remind you of the exercise from the beginning of the chapter:

Exercise. Calculate [
3 1
0 2

]15
=

[
3 1
0 2

]
· . . . ·

[
3 1
0 2

]
︸ ︷︷ ︸

15 fois

Recall that the eigenvectors of A are:

v1 =

(
1
0

)
and v2 =

(
−1
1

)
which are linearly independent and span R2, thus forming a basis for R2. Therefore, we can express A in this
new basis, and as we have already found:

A′ = P−1AP =

[
1 1
0 1

] [
3 1
0 2

] [
1 −1
0 1

]
=

[
3 0
0 2

]
in the basis (v1, v2) with the change-of-basis matrix:

P =

[
1 −1
0 1

]
and P−1 =

[
1 1
0 1

]
Furthermore, by multiplying A′ by A′, we get:

A′ ·A′ = (P−1AP )(P−1AP ) = P−1A2P = A′2

hence
A′n = P−1AnP ⇒ PA′nP−1 = PP−1AnPP−1 = An
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This allows us to first calculate the power of A′:

A′15 =

[
3 0
0 2

]15
=

[
3 0
0 2

] [
3 0
0 2

] [
3 0
0 2

]13
=

[
32 0
0 22

] [
3 0
0 2

]13
=

[
315 0
0 215

]
This is much easier than calculating A15 directly, so now we just need to convert back to the canonical basis:

P

[
315 0
0 215

]
P−1 =

[
1 −1
0 1

] [
315 0
0 215

] [
1 1
0 1

]
=

[
315 315 − 215

0 215

]
What is very useful about diagonal matrices is that the power of such a matrix is equal to the same matrix

with its diagonal elements raised to the power, i.e:

A′ =


λ1 0 . . . 0
0 λ2 . . . 0
...

. . . . . .
...

0 0 . . . λn

⇒ A′n =


λ1 0 . . . 0
0 λ2 . . . 0
...

. . . . . .
...

0 0 . . . λn


n

=


λn
1 0 . . . 0
0 λn

2 . . . 0
...

. . . . . .
...

0 0 . . . λn
n


Let’s generalize: If A ∈ Mn(K) is diagonalizable (i.e., there exist P and A′ such that A′ = P−1AP ), then:

An = P (A′n)P−1 = P


λn
1 0 . . . 0
0 λn

2 . . . 0
...

. . . . . .
...

0 0 . . . λn
n

P−1

3.6.2 Resolution of a System of Recurrent Sequences
Let (un)n∈N and (vn)n∈N be two sequences such that:{

un+1 = un − vn

vn+1 = 2un + 4vn
(3.1)

with u0 = 2 and vn = 1. Let Xn =

(
un

vn

)
, then the system 3.1is written:

Xn+1 = AXn with A =

(
1 −1
2 4

)
by recurrence, we obtain:

Xn = AnX0 with X0 =

(
2
1

)
Therefore, we are brought back to calculating the power of a matrix: An which we saw in section 3.6.1You can

verify that there exists P ∈ GL2(R) such that

P =

(
−1 1
1 −2

)
with A = P

(
2 0
0 3

)
P−1

and then

An = P

(
2n 0
0 3n

)
P−1 =

(
−1 1
1 −2

)(
2n 0
0 3n

)(
−2 −1
−1 −1

)
=

(
2 · 2n − 3n 2n − 3n

−2 · 2n + 2 · 3n −2n + 2 · 3n
)

Whence (
un

vn

)
=

(
2 · 2n − 3n 2n − 3n

−2 · 2n + 2 · 3n −2n + 2 · 3n
)(

2
1

)
=

(
4 · 2n − 2 · 3n + 2n − 3n

−4 · 2n + 4 · 3n − 2n + 2 · 3n
)

that is: {
un = 5 · 2n − 3 · 3n

vn = −5 · 2n + 6 · 3n
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3.6.3 Solving Differential Equations
Consider solving the differential system 

dx1

dt
= a11x1 + · · ·+ a1nxn

...
dxn

dt
= an1x1 + · · ·+ annxn

with aij ∈ R and xi : R → R differentiable.

In matrix form, the system is written as:

dX

dt
= AX, where A = (aij), X =

x1

...
xn

 (3.2)

Suppose A is diagonalizable. Then there exist A′ a diagonal matrix and P an invertible matrix such that:

A′ = P−1AP.

If A is considered as the matrix of an endomorphism in the canonical basis, then A′ is the matrix of f in the basis
of eigenvectors {vi}.

Similarly X is the matrix of a vector x⃗ in the canonical basis and X ′ = M(x⃗)vi , is related to X by

X ′ = P−1X

Note. Note! In this section X ′ does not describe the derivative, but a vector denoted X ′!

By differentiating this relation:
dX ′

dt
= P−1 dX

dt

(because A having constant coefficients, P will also have constant coefficients). Therefore:

dX ′

dt
= P−1AX =

(
P−1AP

)
X ′ = A′X ′

The system 3.2is therefore equivalent to the system

dX ′

dt
= A′X ′

This system is easily integrated, because A′ is diagonal.

Thus, we can solve the system dX
dt = AX as follows:

1. We diagonalize A. Let A′ = P−1AP be a diagonal matrix similar to A;

2. we integrate the system dX′

dt = A′X ′;

3. we return to X using X = PX ′.
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3.6.4 Example
Consider the system 

dx

dt
= x− y

dy

dt
= 2x+ 4y

We have A′ =

(
2 0
0 3

)
and P =

(
1 1
−1 −2

)
The system dX′

dt = A′X ′ is written as: 
dx′

dt
= 2x′

dy′

dt
= 3y′

which immediately gives {
x′ = C1e

2t

y′ = C2e
3t

and thus, by reverting to X using X = PX ′ :(
x
y

)
=

(
1 1
−1 −2

)(
C1e

2t

C2e
3t

)
=

(
C1e

2t + C2e
3t

−C1e
2t − 2C2e

3t

)
that is: {

x = C1e
2t + C2e

3t

y = −C1e
2t − 2C2e

3t

3.7 Trigonalization
A matrix A ∈ Mn(K) is called upper triangular if it is of the form:

A =


a1,1 a1,2 . . . a1,n

0 a2,2
. . .

...
...

. . . . . . an−1,n

0 . . . 0 an,n


respectively lower triangular:

A =


a1,1 0 . . . 0

a2,1 a2,2
. . .

...
...

. . . . . . 0
an,1 . . . an,n−1 an,n



Remark 3.17. Any upper triangular matrix A is similar to a lower triangular matrix.

Proof. Let A be an upper triangular matrix and f be the endomorphism of Kn which, in the basis {e1, . . . , en}, is
represented by the matrix A, then:

f(e1) = a1,1e1

f(e2) = a1,2e1 + a2,2e2
...
f(en) = a1,ne1 + a2,ne2 + . . .+ an,nen

⇔ A =


a1,1 a1,2 . . . a1,n

0 a2,2
. . .

...
...

. . . . . . an−1,n

0 . . . 0 an,n
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Let’s consider the basis
ε1 = en, ε2 = en−1, . . . , εn = e1

then we have: 

f( ε1︸︷︷︸
en

) == a1,n εn︸︷︷︸
e1

+a2,n εn−1︸︷︷︸
e2

+ . . .+ an,n ε1︸︷︷︸
en

f( ε2︸︷︷︸
en−1

) == a1,n−1 εn︸︷︷︸
e1

+ . . .+ an−1,n−1 ε2︸︷︷︸
en−1

...
f( εn︸︷︷︸

e1

) = a1,1 εn︸︷︷︸
e1

thus

A′ = M(f)εi =


an,n . . . 0

an−1,n an−1,n−1 . . . 0
...

. . .
a1,n . . . a1,1



3.7.1 The geometric intuition of diagonalization
Let’s recall diagonalization. The matrix A representing the endomorphism f in Kn = Vect(e1, . . . , en) is diagonal-
izable if there exist enough vector subspaces {F1, . . . , Fn}, each of dimension 1, such that Kn = F1 ⊕ . . .⊕ Fn and
∀i ∈ {1, . . . , n}, f(Fi) ⊂ Fi (a vector remains in the space after applying f). What can be seen geometrically:

−2 2 4

−2

2

4

F1

F2

v1

v2

Av1

Av2

x

y

Eigenvector Transformation

We already know that such an endomorphism is very useful, but it is not often that it can be diagonalized.
Therefore, it would be useful to have something more general but still similar to diagonalization.

3.7.2 The Geometric Intuition of Trigonalization
The geometry of the trigonalizable endomorphism is similar yet still different. Let A be a representative matrix
of the endomorphism f in Kn. It is trigonalizable if there exists a basis {v1, . . . , vn} of Kn, let’s denote F1 =
Vect(v1), F2 = Vect(v1, v2), . . . , Fn = Vect(v1, v2, . . . , vn) such that

F1 ⊂ F2 ⊂ . . . ⊂ Fn

and
∀i ∈ {1, . . . , n}, f(Fi) ⊂ Fi
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Do you see the similarity? The endomorphism is stable by the subspace! The vector applied to f never leaves its
subspace. Let’s take the following matrix as an example:

A =

1 1 0
0 2 1
0 0 3

 = Mat(f)ei

2

4

−1
1

2
3

4

2

4

F1

F2

v ∈ F3

x

y

z

As we have an intuition for trigonalizable endomorphisms, let’s return to pure mathematics.

3.7.3 Theory

Theorem 3.18. An endomorphism is trigonalizable in K if and only if its characteristic polynomial splits in
K.

This means that the characteristic polynomial has exactly n roots, where n = dim(E), and can be written
as:

Pf (X) = (−1)n(X − λ1)
α1 · · · (X − λp)

αp

with α1 + . . .+ αp = n

Proof. -

• Suppose the endomorphism f is trigonalizable and let {e1, . . . , en} be a basis such that

M(f)ei =


a1,1 ∗
0 a2,2
...

. . .
0 . . . 0 an,n


We have:

Pf (X) = det


a1,1 −X ∗

0 a2,2 −X
...

. . .
0 . . . 0 an,n −X

 = (a1,1 −X) · · · (an,n −X)

Thus, Pf (X) is split (we can note that its roots are the eigenvalues of f).

• Suppose Pf (X) is split and let us show by induction that f is trigonalizable.

For n = 1, it is trivial.

Suppose that the result holds for order n − 1. Since Pf (X) is split, it admits at least one root λ1 ∈ K
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and thus an eigenvector ε1 ∈ Eλ1 . Let’s complete {ε1} to a basis {ε1, . . . , εn}, so we have:

A = M(f)εi =


λ1 b2 . . . bn
0
... B
0

 , where: B ∈ Mn−1(K)

Let F = Vect(ε2, . . . , εn) and g : F → F be the unique endomorphism of F such that M(g)ε2,...,εn = B,
we have:

Pf (X) = det(A−XIn) = (λ1 −X) det(B −XIn−1) = (λ1 −X)Pg(X)

Since Pf (X) is split, Pg(X) is also split, and by the induction hypothesis, B is trigonalizable, so there
exists a basis {v2, . . . , vn} in which M(g)v2,...,vn is triangular, and thus the matrix of f in the basis
{ε1, v2, . . . , vn} is triangular, so f is trigonalizable.

Corollary 3.19. Any matrix A ∈ Mn(C) is similar to a triangular matrix in Mn(C).

Intuition. According to the abstract algebra course, every polynomial in C is split.

Remark 3.20. -

1. If A is trigonalizable and A′ is triangularly similar to A, then A′ has its eigenvalues on the diagonals.

2. Any matrix A ∈ Mn(K) is trigonalizable over the closure K ′ of K. (e.g.: A ∈ Mn(R) is trigonalizable
over C).

Corollary 3.21. Let A ∈ Mn(K) have {λ1, . . . , λn} as its eigenvalues, then

Tr(A) = λ1 + . . .+ λn

det(A) = λ1 · . . . · λn

Proof. A′ ∈ Mn(K
′) is triangular and similar to A (recall: K ′ is the closure of K), so the eigenvalues are on the

diagonal of A′. Now, similar matrices have the same trace and determinant, so Tr(A) = Tr(A′) = λ1 + . . . + λn

and det(A) = det(A′) = λ1 · . . . · λn.

We will show the trigonalization process with the following example:

Example 3.22. Let the matrix

A =

−4 0 −2
0 1 0
5 1 3


. We have the characteristic polynomial PA(X) = −(X−1)2(X+2) which is split over R, so A is trigonalizable
(according to Theorem 3.18). Therefore, if we consider A as an endomorphism in the canonical basis, we know
that there exists a basis {vi} of R3 such that:

M(f)vi =

1 a b
0 1 c
0 0 −2
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I remind you that this means: 
f(v1) = v1

f(v2) = av1 + v2

f(v3) = bv1 + cv2 − 2v3

(3.3)

Let’s start by finding v1. We know that v1 is an eigenvector corresponding to the eigenvalue λ1 = 1, i.e.,
(f − Id)v1 = 0. So, let’s calculate (A− I)v1 = 0 (in other words, we are looking for v1 that spans ker(A− I)):

(A− I)

x
y
z

⇔

{
−5x− 2z = 0

5x+ y + 2z = 0

Thus, we can choose v1 =

 2
0
−5

 (in other words, ker(A− I) = Vect(

 2
0
−5

)).

Next, let’s find v2. According to 3.3,

f(v2) = av1 + v2

⇒f(v2)− v2 = av1

⇒(f − I)v2 = av1

⇒(A− I)v2 = av1

Thus we have:

(A− I)

x
y
z

 = a

 2
0
−5

⇔

{
−5x− 2z = 2a

5x+ y + 2z = −5a

So, by taking a = 1, we get {
−5x− 2z = 2

5x+ y + 2z = −5

therefore v2 =

−2
−3
4

 (just by solving the system).

For v3, we have two choices:

1. either proceed similarly by solving the system,

2. or notice that there exists an eigenvector of A corresponding to the eigenvalue −2, i.e., ∃v3 ∈ R3 such
that f(v3) = −2v3. In this case, we can take this vector v3 and thus set b = c = 0.

Remark 3.23. Why can we do this? Because for every eigenvalue of f , there always exists an eigenspace
with multiplicity at least 1, and this applies to the eigenvalue −2 as well.

So, let’s find v3:

(A+ 2I)v3 = 0 ⇔

{
−2x− 2z = 0

3y = 0

thus we can take v3 =

 1
0
−1

.
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Consequently, the matrix A is similar to

A′ = M(f)vi =

1 1 0
0 1 0
0 0 −2


with the change-of-basis matrix:

P = ∥v1, v2, v3∥ =

 2 −2 1
0 −3 0
−5 4 −1



3.8 Annihilating Polynomials
In the previous sections, we learned that to know if a matrix is diagonalizable, we must study the eigenspaces,
which is not always very easy and is not the fastest way. So, in this section we will see one of the other methods
of studying diagonalizability, one of these methods is the study of annihilating polynomials.

Remark 3.24. In this section, I will not write out most of the proofs, but rather the intuition behind why it
is true and why it works.

Definition 3.25. Let f ∈ Kn be an endomorphism. A polynomial Q(X) ∈ K[X] is an annihilating polyno-
mial of f if Q(f) = 0.

Example 3.26. Let f be a projection, then we know that f2 = f , hence f2 − f = 0, so Q(X) = X2 −X =
X(X − 1) is an annihilating polynomial of f .

What is important is that the annihilating polynomials are closely related to the eigenvalues:

Proposition 3.27. Let Q(X) be an annihilating polynomial of f , then the eigenvalues of f appear among the
roots of Q, i.e.:

Sp(f) ⊂ Rac(Q)

Proof. Let Q(X) = anX
n + an−1X

n−1 + . . .+ a0 be an annihilating polynomial for f and λ an eigenvalue of
f . Thus, ∃v ̸= 0 ∈ E such that f(v) = λv, moreover:

Q(f) = anf
n + an−1f

n−1 + . . .+ a0 Id = 0

Since f(v) = λv, it follows that f2(v) = f(λv) = λ2v, whence fk(v) = λkv ∀k ∈ N. Then:

Q(f(v)) = 0 = (anf
n + an−1f

n−1 + . . .+ a0 Id)v = (anλ
n + an−1λ

n−1 + . . .+ a0 Id)v = 0

Since v ̸= 0, it follows that anλ
n + an−1λ

n−1 + . . .+ a0 Id = 0, whence λ is a root of Q.

Note. However, the equality is not generally true; for example, Id2 = Id, thus Q(X) = X2 −X = X(X − 1)
annuls Id with roots 0 and 1, but 0 is not an eigenvalue of Id.
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Theorem 3.28. Cayley-Hamilton. Let f ∈ Kn be an endomorphism and Pf (X) its characteristic polyno-
mial, then

Pf (f) = 0

In other words, the characteristic polynomial of an endomorphism is its annihilating polynomial.

Intuition. The characteristic polynomial describes the structure of f , i.e., what operations must be performed to
lose at least one dimension; if factors of the form (X − λ)n are obtained, then one must apply f(v) − λv) = vr,
and then to the result vr again, i.e., f(vr) − λvr, and we repeat n times (this occurs in the case of trigonalizable
matrices).

The theorem remains true even in cases where the endomorphism is not trigonalizable, because we can choose
the closure K ′ of the field K in which our endomorphism is defined, and it becomes trigonalizable (e.g., C for R).

Furthermore, the characteristic polynomial gives us ker(Pf (X)) = E, i.e., the vectors that become null under
the action of Pf (f). The interesting fact is that all vectors in E belong to this kernel, and thus ∀v ∈ E, pf (f)v = 0,
from which pf (f) = 0.

Definition 3.29. Let Q be a split polynomial:

Q(X) = (X − a1)
α1 · · · (X − ar)

αr

The polynomial
Q1 = (X − a1) · · · (X − ar)

is called the radical of Q (i.e., a split polynomial (the same polynomial but without powers next to the
parentheses)).

Furthermore, Q1 | Q i.e., the radical of a polynomial divides the polynomial itself.

Proposition 3.30. Let f be an endomorphism and

Pf (X) = (−1)n(X − λ1)
α1 · · · (X − λp)

αp

its characteristic polynomial. Then, if f is diagonalizable, the radical Q1 also annihilates f , i.e.

Q1(f) = (f − λ1) · · · (f − λr) = 0

Intuition. I will provide the intuition behind the proof. If f is diagonalizable with a characteristic polynomial

Pf (X) = (−1)n(X − λ1)
α1 · · · (X − λp)

αp

with r := αi > 1, this does not mean that one must apply (f − λi Id) r times to reduce the dimension as in the
case of trigonalizable matrices, but rather that Eλi , the eigenspace for the eigenvalue λi, has dimension αi = r,
and therefore ∀v ∈ Eλi

, f(v) = λiv.
Since E = Eλ1

⊕ . . . ⊕ Eλp
, if v ∈ E, then ∃i ∈ {1, . . . , p} such that v ∈ Eλi

, and thus f(v) − λiv = 0, i.e.,
(f − λi Id)(v) = 0. Hence, the radical of Pf annihilates f .

3.9 The Kernel Lemma

Lemma 3.31. of Kernels Let f ∈ Kn be an endomorphism and

Q(X) = Q1(X) · · ·Qp(X)
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a polynomial factored into a product of pairwise coprime polynomials. If Q(f) = 0 then:

E = KerQ1(f)⊕ . . .⊕KerQp(f)

Intuition. Since Q(f) = 0, therefore ∀v ∈ E,Q(f)(v) = 0 which means Ker(Q(f)) = E. ∃v1, . . . , vp such
that v = v1 + . . . + vp. However, all polynomials are pairwise coprime, so only one of them annihilates vi, thus
vi ∈ KerQi(f) and this remains true for all v1, . . . , vp. And since the polynomials are coprime, if k ̸= j and
Qk(vi) = 0, then Qj(vi) ̸= 0 because Qj and Qk are different. Therefore, ∀i, j KerQi ∩KerQj = {0}.

Remark 3.32. Let’s revisit the example of f which is a projection, thus f2 − f = 0 and Q(X) = X2 −X =
X(X − 1) annihilates f . Now X and X − 1 are coprime, then

E = Ker f ⊕Ker(f − Id)

More generally, let f be an endomorphism and Q(X) = (X − λ1) · · · (X − λp) such that Q(f) = 0, we have:

E = Ker(f − λ1 Id)︸ ︷︷ ︸
Eλ1

⊕ . . .⊕Ker(f − λp Id)︸ ︷︷ ︸
Eλp

Of course, λi ̸= λj . And thus f is diagonalizable because it is a direct sum of these eigenspaces.

Corollary 3.33. An endomorphism f is diagonalizable if and only if there exists an annihilating polynomial Q
of f that is split and has only simple roots a

ascindé: (X − λi)
αi - X est à la puissance 1! racines simples: si αi = 1 aussi i.e les facteurs (X − λ) sont à la puissance 1!

3.10 Finding Annihilating Polynomials. Minimal Polynomial

Definition 3.34. A minimal polynomial of f , denoted mf (X), is defined as the monic polynomial a that
annihilates f and has the smallest degree.

ai.e de coefficient 1 du terme du plus haut degré, i.e: 1 ∗Xn + an−1Xn−1 + . . .+ a0

Proposition 3.35. The annihilating polynomials of f are of the form:

Q(X) = A(X)mf (X) with A(X) ∈ K[X]

i.e., mf (X) divides Q(X).

Proposition 3.36. The roots of the minimal polynomial mf (X) are exactly the roots of the characteristic
polynomial Pf (X), i.e., the eigenvalues.

Proof. We know that Pf (X) = A(X)mf (X) so if λ is a root of mf (X), then it is also a root of Pf (X).
Conversely, if λ is a root of Pf (X) then it is an eigenvalue, however mf (X) annihilates f , therefore λ is also
a root of mf (X).
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Theorem 3.37. An endomorphism f is diagonalizable if and only if its minimal polynomial is split and all its
roots are simple.

Example 3.38. 1. A =

−1 1 1
1 −1 1
1 1 −1

. PA(X) = −(X − 1)(X + 2)2, so we have two possibilities:

• mA(X) = (X − 1)(X + 2) - so A is diagonalizable

• mA(X) = (X − 1)(X + 2)2 - so A is not diagonalizable

Let’s calculate:

(A− I)(A+ 2I) =

−2 1 1
1 −2 1
1 1 −2

1 1 1
1 1 1
1 1 1

 =

0 0 0
0 0 0
0 0 0


Therefore, mf (X) = (X − 1)(X + 2) and thus A is diagonalizable.

2. A =

3 −1 1
2 0 1
1 −1 2

. We have: PA(X) = −(X − 1)(X − 2)2, thus:

mA(X) =

{
(X − 1)(X − 2) i.e A diagonalisable
(X − 1)(X − 2)2 i.e A pas diagonalisable

Let’s calculate:

(A− I)(A− 2I) =

2 −1 1
2 −1 1
1 −1 1

1 −1 1
2 −2 1
1 −1 0

 =

1 −2 1
1 −2 1
0 −2 2

 ̸=

0 0 0
0 0 0
0 0 0


Hence mA(X) ̸= (X − 1)(X − 2) and thus A is not diagonalizable.
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APPENDIX A
Reminders of Linear Algebra concepts

A.1 Matrices

A.1.1 Multiplication of matrices

Definition A.1. Let A ∈ Mp,n(R) and B ∈ Mn,q(R) such that A = (aj,i) and B = (bm,k), then:

AB = C = (cj,k =

n∑
i=1

aj,ibi,k)

A.1.2 The trace

Definition A.2. The trace of the n× n square matrix A, denoted tr(A), is the sum of the diagonal elements

tr(A) = a11 + a22 + · · ·+ ann =

n∑
i=1

aii

where aii are diagonal elements of the matrix A.

Property. of the trace.

• Linearity:
tr(A+B) = tr(A) + tr(B)

tr(cA) = ctr(A), c ∈ R (ou C)

• Transposed:
tr(A) = tr(AT )

• Multiplication of matrices:

tr(AB) = tr(BA), (si A et B are of size n× n)

However, the trace is not distributive over multiplication:

tr(ABC) ̸= tr(A)tr(BC)

• Eigenvalues:

tr(A) =

n∑
i=1

λi

where λi are the eigenvalues of A. This makes the trace an important tool in spectral analysis.
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• Trace of the Identity Matrix

tr(In) = n

since all the diagonal elements are equal to 1.

Example A.3. For

A =

3 2 1
4 5 6
7 8 9


the trace is:

tr(A) = 3 + 5 + 9 = 17

Example A.4. If

B =

[
2 1
0 3

]
, C =

[
4 2
1 5

]
then

tr(B + C) = tr
[
6 3
1 8

]
= 6 + 8 = 14

which corresponds well to

tr(B) + tr(C) = (2 + 3) + (4 + 5) = 14

thus confirming linearity.
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