
Translation Prototype Report
Yehor KOROTENKO

26 May 2025

1 Introduction
The goal of the prototype was the developing an application that would be able to translate
entirely a chosen directory to particular languages and translation of the French Python Course
in order to show the efficiency of the developed application.

2 Application architecture
For the ease of creating applications of different formats such as CLI, GUI the choice of developing
a library has been made. Furthermore, on top of that library a demo CLI application has been
created to simplify the usage and testing process.

The library and the CLI app can be found using the next links:
1. https://github.com/DobbiKov/translate-dir-lib - for the library
2. https://github.com/DobbiKov/translate-dir-cli - for the CLI

2.1 Library architecture
The library is divided into the next modules:

• project - main entry to the library, the only module that “talks” to external applications
• project_config - designed for formatting and working with a particular project’s configu-

ration. Will be used for imitating git architecture in the future.
• translator = temporary module for translation, built to simplify the process of prompt or

model choice
• helper = helper module to work with text providing such functions:

‣ divide text into chunks
‣ extract output from the model’s response
‣ etc.

2.2 Application logic
The git has been an inspiration for the application logic, thus, to create a translation logic,
a directory must be chosen to be a translation project and be initialized using the provided
command from the library.

2.2.1 Directory/language settings

Inside of such project, the source directory must be set as well as its’ language, visually:

| project_root/
| ---- trans_conf.json
| ---- source_dir/ # with a language set
| ---- | ---- [contents of source_dir]

1

https://github.com/DobbiKov/translate-dir-lib
https://github.com/DobbiKov/translate-dir-cli

Translation Prototype Report — Yehor KOROTENKO

The functionality of adding target language as well as its removal also provided in the library.
Important to note, that an addition of a target language creates a directory of the next format:
[project_name]_[language]. Example: the project with a name: translate_temp and French
language gives the next directory: translate_temp_fr. The architecture looks like:

| project_root/
| ---- trans_conf.json
| ---- source_dir/ # with a language set
| ---- | ---- [contents of source_dir]
| ---- translate_temp_fr/
| ---- | ---- [contents of translate_temp_fr]

2.2.2 Syncing and translation

All the files inside of the source directory are considered to be untranslatable by default. In
order to make them translatable, the commands: make_translatale and make_untranslatable
are provided.

sync command triggers the copy process of all the untranslatable files to the target languages
directories in order to recreate the source directory structure to simplify the use process (makes
it easy to compile when translating latex or myst project). Important: translatable files are
not copied during the syncing process.

In order to translate translatable files, the two commands are provided:
• translate_file - takes a file path as an argument and a target language, translates it and

copies to the target language directory keeping the structure (in the same way as it’s done
for the syncing proces).

• translate_all - translates all the translatable files using translate_file command.

3 Large Language Model
For the prototype testing the Gemini 2.0 Flash model has been chosen due to the next reasons:

• google provides free API usage with up to 1500 requests per day for the model name above
• Gemini 2.0 Flash is not expensive, especially in comparison to popular alternatives such

as GPT or Claude (e.g: for this model the cost is 0.1$ per 1 million input tokens and 0.4$
per 1 million output tokens)

• less energy consumption in the comparison with alternatives
• ease of API usage

3.1 Energy consumption
Gemini 2.0 Flash is a new low-latency model from Google that works much faster then
alternatives and consumes less energy as a consequence, the comparison table is provided below:

Model name Energy consumption per request

GPT 4o 0.3 Wh
Gemini 2.0 Flash 0.022 Wh

Gemini 2.0 Flash-Lite 0.016 Wh
Claude Haiku 3.5 0.22 Wh
Claude Opus 3 4.05 Wh

Table 1: LLMs’ energy consumption comparison table

References: [1], [2]

2

Translation Prototype Report — Yehor KOROTENKO

From the provided Table 1, we can deduce that Gemini 2.0 Flash is the most energy efficient
model provided on the market giving state-of-the-art results.

4 Python Course Translation
To test the application the task to translate the python course has been established. In this
section we will investigate the results.

For the course, 72 files needed to be translated that is approximately 132000 tokens. The
files have been divided into chunks, each one containing at most 50 lines of the given file (it is
temporary, the chunking algorithm will be refined in the future).

Each request contained 500 tokens in general to which always the prompt has been added that
is 2054 tokens long. As a consequences, there were approximately 264 request each containing
2554 tokens in general.

Summing the numbers above, we get 2554 ∗ 264 ≈ 675000 input tokens and 132000 output
tokens, using [3], we get a total cost less then 0.5$.

For the energy consumption, we use Table 1, then 264 ∗ 0.022 = 5.808 ≈ 6 Wh that is equiv-
alent to charging a smartphone from 0% to about 15–20%.

5 Encountered problems
The syntax understanding as well as natural text extraction is a difficult process for the Large
Language Models such as Gemini 2.0 Flash especially when it is cut out of the context as it
was in this example due to the inefficient chunking.

For instance, the model doesn’t always understand that a small word is a natural text and
not a variable or a part of syntax. Also, in cases where the code cell is divided into parts for
chunking, the model misinterprets function and variable names as text and translates them
requiring the user to fix those problems.

6 Future work
Due to the problems listed in Section 5, the high importance goal is to rethink and rework the
chunking algorithm.

Secondly, an important task is to refine the prompt and investigate possible solution to
minimize syntax and layout changes as well as the amount of text misinterpreted as a part
of code.

Bibliography
[1] Riya Bansal, “Gemini 2.0 Flash vs o4-mini Can Google Do Better Than OpenAI?.” [Online].

Available: https://www.analyticsvidhya.com/blog/2025/04/gemini-2-0-flash-vs-o4-mini/?
utm_source=chatgpt.com

[2] Julian Wong, “Power consumption of ChatGPT queries not as high as previ-
ously thought.” [Online]. Available: https://www.linkedin.com/pulse/power-consumption-
chatgpt-queries-high-previously-thought-julian-wong-ey28c

[3] “Gemini Pricing.” [Online]. Available: https://ai.google.dev/gemini-api/docs/pricing

3

https://www.analyticsvidhya.com/blog/2025/04/gemini-2-0-flash-vs-o4-mini/?utm_source=chatgpt.com
https://www.analyticsvidhya.com/blog/2025/04/gemini-2-0-flash-vs-o4-mini/?utm_source=chatgpt.com
https://www.linkedin.com/pulse/power-consumption-chatgpt-queries-high-previously-thought-julian-wong-ey28c
https://www.linkedin.com/pulse/power-consumption-chatgpt-queries-high-previously-thought-julian-wong-ey28c
https://ai.google.dev/gemini-api/docs/pricing

	Introduction
	Application architecture
	Library architecture
	Application logic
	Directory/language settings
	Syncing and translation

	Large Language Model
	Energy consumption

	Python Course Translation
	Encountered problems
	Future work
	Bibliography

