Probability Generating Functions = Fonctions Génératrices
Formula for the PGF:
Let X be a random variable that takes values in N. For s∈[0,1[
gX(s)=n≥0∑P(X=n)sn Why bothering?
gX(0)=P(X=0)
n!gX(n)(0)=P(X=n)
gX(1)=∑n≥0P(X=n)=1
gX(k)(1)=E[X(X−1)…(X−k+1)]
That is why it describes a distribution.